Lecture notes Virtual Memory & Super pages

Why virtual memory:

In modern computers, we have multiple processes running concurrently, and we only have one
main memory. Hence, we must make sure that processes access different parts of the main
memory, otherwise they would step on each other’s feet while executing.

The challenging part is that when processes are programmed, they don’t know how many other
processes will run while they are running. Perhaps their program will be the only one running,
and hence it could use the whole main memory address space. On the contrary, if there is
another process running, it must know where that other process saves data in main memory so
that it uses a different part. While possible, that creates a lot of work for the programmers.

Virtual memory helps because it manages to solve this issue, while making the developer’s life
very easy, as they won’t have to worry about any issues related to main memory sharing. The OS
will do all the work.

Mechanism

The basic idea behind virtual memory is that every memory address inside a process is
considered as a “virtual” address. This address is not necessarily the actual address in main
memory. The OS will always translate the “virtual” addresses of a process to an actual
“physical” address in main memory. This translation is done per process. Hence, intuitively we
can see that thanks to this mechanism we can make it so that if there is a “clash” between two
processes, we can simply translate the virtual addresses of one process so that it maps to
another area of main memory thatis free.

Advantages

Virtual memory helps us to provide isolation and protection across processes:

- Isolation: each process has its own address space in main memory.
- Protection: processes cannot directly access main memory using physical addresses.

As we can see in the picture below, the virtual memory of process #1 is mapped to a different
area in main memory compared to process #2.

Virtual Memory Process #1 Physical Memory

1000
1000

Virtual Memory Process #2

2000

1000

Additionally, virtual memory can enlarge the physical memory capacity by using an external
storage to “swap” data in and out, transparently to the processes running.

Implementations

There are two main ways to implement virtual memory:

1-Segmentation

In this implementation, we split the physical memory into varied
sized segments, and each process can only access memory within
its segments. A segment is defined by its “base”, which is its starting
address in physical memory, and its “size”.

— base

Segment 1
An advantage of this approach is that there should be little internal

fragmentation. All the memory of a segment should be used by the +~—— base
owner process.

Segment 2
The first downside of this approach is that the memory withing a

segment needs to be continuous. Segments can’t be split into _ b
~— base

smaller pieces or interrupted by another segment.

Another downside is that this approach suffers from external
fragmentation. After some time, when a lot of processes started and Segment 3
finished, we should see small areas between segments that are free
but too small to be used for a new segment (as indicated in red in
the figure). This leads to a lot of wasted memory.

2-Paging

In this implementation, physical memory is splitinto chunks
of fixed size, called Physical Page Frames (FFP) (middle
column in the figure). Then, the OS will map the same size
chunks of virtual memory to a PPF that is free.

Process 1 Process 2

The advantage of this approach is that there is no external
fragmentation as a new process can always have some of its
virtual addresses be mapped to the free PPF. _—

Also, this approach eliminates the need for a contiguous area Virtual / Virtual
of physical memory, since the address space of a process is Memory Memory

broken down into multiple PPF. Physical
Memory

The downside is that there can be internal fragmentation
inside the PPF, as processes could sometimes need less than
the capacity of a PPF.

Paging explained

For the reasons explained above, modern OS now use paging. Here we will explain this method
in more detail. Here is a virtual address of 32 bits that a process uses:

kil]

Virtual address

If the OS decides to have 4KB PPF, then we need 12 bits to know the offset within that page. The

rest then becomes the virtual page number (VPN):

3 12

virtual page number page offzet

In this case, the virtual page number is 32-12 = 20 bits long. Now, the OS will translate that VPN
into a physical page number (PPN). Imagine we are using a 32 bit system, then the OS would

have to translate those 20 bit VPN to a 20 bit PPN for each process.

Page table array ,
VPN (index) PPN valid?

In order to do this translation, the OS keeps a datastructure 0 = .
called a page table. The first way to implement this data L o]
structure would be to use an array, where the index in that) ey y
array is the VPN, and the value in the array is the PPN. We 3 o 1
can also store a valid bit to indicate whether that PPF was 4 = y
swapped to disk. The OS can then modify this array so that
the process uses different parts of the main memory.

1048574 63463 0

1048575 376 1

The translation process would start at the CR3 register. That register contains the pointer to the
start of the page table for the running process. Then, the VPN is used to index into that table,
and finally the physical address is constructed by replacing the VPN with the PPN in the table.

LD [VA], R1

‘ VPN Page OFFSET

Y

Y

CR3 PPN

The advantage of this approach is that we only need one memory access to get the mapping.

The downside of this approach is its memory footprint. The size of the page tables is fixed, even
if a process uses little memory. In our example, as we have 20 bits for the VPN, we need 22°=
1048576 rows in the table. This would equate to around 4 MB per table, per process. Since we

can have a lot of processes running, the amount of memory taken by the page tables would be
too big.

Multi-level page table

We can improve on the previous method, by dividing the single index into multiple ones, which
will create a hierarchy of tables:

H 22 12 0

directory index iable page offzet

The top 10 bits would be an index in an array (that we call directory), which will point to another
array that we can index with the remaining 10 bits of the VPN. The second array will contain the
PPN for the translation (along with the valid bit, etc).

The translation process is similar to the case with a single array:

LD [VA], R1

‘ Directory Table Page OFFSET

CR3

Page table walk needs multiple

memory access for a load/store

One downside with this approach is that we must perform multiple memory lookups (depending
on the depth of the page table).

The major advantage of this approach is that if the process doesn’t use a certain range of the
VPN values, then in the directory of the page table, instead of a pointer to a new array, we can
simply have NULL. This means we don’t have a secondary array for that range. In essence, the
multi-level page table will only contain mappings for VPN that are actually used by the process.
This can save a lot on the memory footprint. Because of this advantage, this is what modern
OSs use.

Page Fault

A page fault can arise when there is no PPN for a given VNP in the page table of a process. This
event is triggered when the MMU walks the page table to find the translation. In that case, the
control is taken from user space and given to the kernel, so it can service that page fault. A page
fault can be distinguished in two kinds:

1-Major Page Fault Physical

Memory

This page fault is triggered when the kernel previously decided to swap that PPF to
disk, to gain space in main memory. Hence, if the process now requests it, we
need to execute a slow |O operation to get that data from disk back to main
memory. This can take a lot of time.

Read from
Storage

2-Minor Page Fault

The other case is when we simply need to operate in main memory, and hence physical
such page faults should be much faster to resolve. The first case would be that Memory

the data is in DRAM but not yet mapped, so for instance when using shared

memory, or if a fork was created then copy-on-write would be enabled. The E?vm':;
second case is when the mapping is created but the memory is not yet allocated,
for instance when using a deferred allocation of mmap().

Translation lookaside buffer (TLB)

In order to speed up the translation of VPN to PPN, the hardware has a cache dedicated to this
translation, called the “translation lookaside buffer”. One thing to note is that each core on a
CPU has its own TLB, and hence the OS must make sure that coherence is maintained.

The OS has to mechanisms to maintain his coherence:

- TLB Flush: this clears all entries in the TLB of the core.
- TLB Shootdown: clear all TLB entries of other CPU cores who have the same mapping.
(this is expensive as it uses IPl operations).

Page sizes

It is important to note that the OS must decide on the size of the pages. There is a trade-off.
Smaller pages means that you have less internal fragmentation. However, smaller pages means
you have more of them to cover main memory, and hence you have more entries in the page
tables, and hence with a fixed size TLB you will have more cache misses. On the contrary, bigger
pages means more internal fragmentation, but fewer pages and hence smaller page tables and
more TLB hits. Choosing an appropriate value for base pages then becomes important for the
performance of the OS.

TLB with 512 entries:
O cover 2MB physical memory with 4KB page

O cover 1GB physical memory with 2MB page

Super Pages

Taking into account the fact that page sizes are important, we can improve on the multi-level
page table to try to accommodate pages of multiple sizes. The pages of the default smallest size
are “base” pages, and pages of larger size are “super” pages.

External
Storage

External
Storage

1

Going back to the structure of the multi-level page table, the solution is to use the directory
index value as the super page index:

k1l 22 12 0

directory index table page offset

hl 22

directory index page offzet

In this case, certain addresses would be used for base pages, and others would be used for
super pages. Here, super pages are 222 = 4MB big (from their offset).

When you want to interpret a virtual address, you first look in the root array using the directory
index, and look at the value. It can be referencing a secondary array (in which case the address
is in a base page) or it could directly reference a physical super page.

[Directory Table | Page OFFSET
_b
/1 - - -
’ - Base Pages
s [-
, >
, s - , s
- L
s
CR3
o I T -
- Super Pages

Directory Page OFFSET

This the advantage with this technique is that the OS can support both small and large pages,
depending on the access pattern of the process. Do note that here we have a two level multi-
level page table, hence we can only create pages of two sizes. Increasing the height of the multi-
level page table enables to create pages of more sizes.

Reservation list

The reservation list is the internal data structure that the kernel uses to track all the allocated
pages to processes. The pages are first separated by size, and then sorted in LRU order:

we [} 1]
s [} [}]

oake | | [|1 [|1 []
1 1

Least Recent Used Most Recent Used

Here the OS supports 3 different sizes. The LRU is important because when it needs more space
in memory and hence needs to swap a page to disk, it must know the LRU page as it is the best
candidate for least overhead.

Population map

The population map is the data structure that is used to track all the pages allocated to a
process. This is used to know whether promotion or demotion is necessary. It is implemented
using a Radix Tree:

(somepop, fuIIpop)'“ =40

4| |
P

P

/
r
||1’|0|

T

Each level of the tree represents a page size. The bottom level represents the base pages
allocated to that process. The nodes of the tree contain two values, the first represents the
number of children, and the second represents the number of children that are “full”. A full child
means that the process used all the addresses within the given range. For instance the right
most bottom node has allits nodes coloured, meaning the process uses all those addresses
withing that range. As we can see, the four children of the node are full, and hence the OS could
decide to promote those base pages to a super page.

Promotion and demotion

The OS can promote and demote pages to change their size. This has several advantages.

Promotion helps because it reduces the number of entries in the TLB needed for that address
range, and hence it willimprove the performance.

Demotion helps if there is a lot of internal fragmentation in a super page. Also, this is sometimes
necessary as we want to have a finer grained control/permission on certain parts of a super
page, so de split it into several base pages. Also, we sometimes want to swap a huge page to
disk, so we first split it into base pages and only send to disk the necessary amount of base
pages.

Evaluation

As we can see in the table below, enabling huge pages gives a positive speedup for all the
workflows presented, especially the last one where it achieved a speedup of 7.5 !

Superpage usage Miss

Bench- 8 64 512 4 reduc Speed-
mark KB KB KB MB (%) up

Web 30623 5| 143 1 16.67 1.019
Image 163 1 17 71| 75.00 1.228
Povray 136 6 17 14 || 97.44 1.042
Linker 6317 12 29 7 1| 85.71 1.326
c4 76 2 9 0 [95.65 1.360
Tree 207 6 14 1 || 97.14 1.503
SP 151 103 15 0 [99.55 1.193
FFTW 160 5 7 60 || 99.59 1.549
Matrix 198 12 5 3| 99.47 7.546

