
Lecture notes Virtual Memory & Super pages 

Why virtual memory: 
In modern computers, we have multiple processes running concurrently, and we only have one 
main memory. Hence, we must make sure that processes access different parts of the main 
memory, otherwise they would step on each other’s feet while executing. 

The challenging part is that when processes are programmed, they don’t know how many other 
processes will run while they are running. Perhaps their program will be the only one running, 
and hence it could use the whole main memory address space. On the contrary, if there is 
another process running, it must know where that other process saves data in main memory so 
that it uses a different part. While possible, that creates a lot of work for the programmers. 

Virtual memory helps because it manages to solve this issue, while making the developer’s life 
very easy, as they won’t have to worry about any issues related to main memory sharing. The OS 
will do all the work. 

Mechanism 
The basic idea behind virtual memory is that every memory address inside a process is 
considered as a “virtual” address. This address is not necessarily the actual address in main 
memory. The OS will always translate the “virtual” addresses of a process to an actual 
“physical” address in main memory. This translation is done per process. Hence, intuitively we 
can see that thanks to this mechanism we can make it so that if there is a “clash” between two 
processes, we can simply translate the virtual addresses of one process so that it maps to 
another area of main memory that is free. 

Advantages 
Virtual memory helps us to provide isolation and protection across processes: 

- Isolation: each process has its own address space in main memory. 
- Protection: processes cannot directly access main memory using physical addresses. 

As we can see in the picture below, the virtual memory of process #1 is mapped to a different 
area in main memory compared to process #2. 

 

 

 

 

 

 

 

Additionally, virtual memory can enlarge the physical memory capacity by using an external 
storage to “swap” data in and out, transparently to the processes running. 



Implementations 
There are two main ways to implement virtual memory: 

1-Segmentation 

In this implementation, we split the physical memory into varied 
sized segments, and each process can only access memory within 
its segments. A segment is defined by its “base”, which is its starting 
address in physical memory, and its “size”. 

An advantage of this approach is that there should be little internal 
fragmentation. All the memory of a segment should be used by the 
owner process. 

The first downside of this approach is that the memory withing a 
segment needs to be continuous. Segments can’t be split into 
smaller pieces or interrupted by another segment. 

Another downside is that this approach suffers from external 
fragmentation. After some time, when a lot of processes started and 
finished, we should see small areas between segments that are free 
but too small to be used for a new segment (as indicated in red in 
the figure). This leads to a lot of wasted memory. 

2-Paging 

In this implementation, physical memory is split into chunks 
of fixed size, called Physical Page Frames (FFP) (middle 
column in the figure). Then, the OS will map the same size 
chunks of virtual memory to a PPF that is free. 

The advantage of this approach is that there is no external 
fragmentation as a new process can always have some of its 
virtual addresses be mapped to the free PPF. 

Also, this approach eliminates the need for a contiguous area 
of physical memory, since the address space of a process is 
broken down into multiple PPF. 

The downside is that there can be internal fragmentation 
inside the PPF, as processes could sometimes need less than 
the capacity of a PPF. 

Paging explained 
For the reasons explained above, modern OS now use paging. Here we will explain this method 
in more detail. Here is a virtual address of 32 bits that a process uses: 



If the OS decides to have 4KB PPF, then we need 12 bits to know the offset within that page. The 
rest then becomes the virtual page number (VPN): 

 

In this case, the virtual page number is 32-12 = 20 bits long. Now, the OS will translate that VPN 
into a physical page number (PPN). Imagine we are using a 32 bit system, then the OS would 
have to translate those 20 bit VPN to a 20 bit PPN for each process. 

Page table array 
In order to do this translation, the OS keeps a datastructure 
called a page table. The first way to implement this data 
structure would be to use an array, where the index in that 
array is the VPN, and the value in the array is the PPN. We 
can also store a valid bit to indicate whether that PPF was 
swapped to disk. The OS can then modify this array so that 
the process uses different parts of the main memory. 

 

 

The translation process would start at the CR3 register. That register contains the pointer to the 
start of the page table for the running process. Then, the VPN is used to index into that table, 
and finally the physical address is constructed by replacing the VPN with the PPN in the table. 

 

 

 

 

 

 

 

 

 

 

The advantage of this approach is that we only need one memory access to get the mapping.  

The downside of this approach is its memory footprint. The size of the page tables is fixed, even 
if a process uses little memory. In our example, as we have 20 bits for the VPN, we need 220 = 
1048576 rows in the table. This would equate to around 4 MB per table, per process. Since we 



can have a lot of processes running, the amount of memory taken by the page tables would be 
too big. 

Multi-level page table 
We can improve on the previous method, by dividing the single index into multiple ones, which 
will create a hierarchy of tables: 

 

 

The top 10 bits would be an index in an array (that we call directory), which will point to another 
array that we can index with the remaining 10 bits of the VPN. The second array will contain the 
PPN for the translation (along with the valid bit, etc). 

The translation process is similar to the case with a single array: 

 

 

 

 

 

 

 

 

One downside with this approach is that we must perform multiple memory lookups (depending 
on the depth of the page table).  

The major advantage of this approach is that if the process doesn’t use a certain range of the 
VPN values, then in the directory of the page table, instead of a pointer to a new array, we can 
simply have NULL. This means we don’t have a secondary array for that range. In essence, the 
multi-level page table will only contain mappings for VPN that are actually used by the process. 
This can save a lot on the memory footprint. Because of this advantage, this is what modern 
OSs use. 

Page Fault 
A page fault can arise when there is no PPN for a given VNP in the page table of a process. This 
event is triggered when the MMU walks the page table to find the translation. In that case, the 
control is taken from user space and given to the kernel, so it can service that page fault. A page 
fault can be distinguished in two kinds: 



1-Major Page Fault 

This page fault is triggered when the kernel previously decided to swap that PPF to 
disk, to gain space in main memory. Hence, if the process now requests it, we 
need to execute a slow IO operation to get that data from disk back to main 
memory. This can take a lot of time. 

2-Minor Page Fault 

The other case is when we simply need to operate in main memory, and hence 
such page faults should be much faster to resolve. The first case would be that 
the data is in DRAM but not yet mapped, so for instance when using shared 
memory, or if a fork was created then copy-on-write would be enabled. The 
second case is when the mapping is created but the memory is not yet allocated, 
for instance when using a deferred allocation of mmap(). 

Translation lookaside buffer (TLB) 
In order to speed up the translation of VPN to PPN, the hardware has a cache dedicated to this 
translation, called the “translation lookaside buffer”. One thing to note is that each core on a 
CPU has its own TLB, and hence the OS must make sure that coherence is maintained. 

The OS has to mechanisms to maintain his coherence: 

- TLB Flush: this clears all entries in the TLB of the core. 
- TLB Shootdown: clear all TLB entries of other CPU cores who have the same mapping. 

(this is expensive as it uses IPI operations). 

Page sizes 
It is important to note that the OS must decide on the size of the pages. There is a trade-off. 
Smaller pages means that you have less internal fragmentation. However, smaller pages means 
you have more of them to cover main memory, and hence you have more entries in the page 
tables, and hence with a fixed size TLB you will have more cache misses. On the contrary, bigger 
pages means more internal fragmentation, but fewer pages and hence smaller page tables and 
more TLB hits. Choosing an appropriate value for base pages then becomes important for the 
performance of the OS. 

 

 

 

Super Pages 
Taking into account the fact that page sizes are important, we can improve on the multi-level 
page table to try to accommodate pages of multiple sizes. The pages of the default smallest size 
are “base” pages, and pages of larger size are “super” pages. 



Going back to the structure of the multi-level page table, the solution is to use the directory 
index value as the super page index: 

 

In this case, certain addresses would be used for base pages, and others would be used for 
super pages. Here, super pages are 222 = 4MB big (from their offset). 

When you want to interpret a virtual address, you first look in the root array using the directory 
index, and look at the value. It can be referencing a secondary array (in which case the address 
is in a base page) or it could directly reference a physical super page.  

 

 

 

 

 

 

 

 

 

This the advantage with this technique is that the OS can support both small and large pages, 
depending on the access pattern of the process. Do note that here we have a two level multi-
level page table, hence we can only create pages of two sizes. Increasing the height of the multi-
level page table enables to create pages of more sizes.  

Reservation list 
The reservation list is the internal data structure that the kernel uses to track all the allocated 
pages to processes. The pages are first separated by size, and then sorted in LRU order: 



 

 

 

 

 

 

Here the OS supports 3 different sizes. The LRU is important because when it needs more space 
in memory and hence needs to swap a page to disk, it must know the LRU page as it is the best 
candidate for least overhead. 

Population map 
The population map is the data structure that is used to track all the pages allocated to a 
process. This is used to know whether promotion or demotion is necessary. It is implemented 
using a Radix Tree: 

 

 

 

 

 

 

 

 

 

 

 

Each level of the tree represents a page size. The bottom level represents the base pages 
allocated to that process. The nodes of the tree contain two values, the first represents the 
number of children, and the second represents the number of children that are “full”. A full child 
means that the process used all the addresses within the given range. For instance the right 
most bottom node has all its nodes coloured, meaning the process uses all those addresses 
withing that range.  As we can see, the four children of the node are full, and hence the OS could 
decide to promote those base pages to a super page. 

Promotion and demotion 
The OS can promote and demote pages to change their size. This has several advantages. 

Promotion helps because it reduces the number of entries in the TLB needed for that address 
range, and hence it will improve the performance. 



Demotion helps if there is a lot of internal fragmentation in a super page. Also, this is sometimes 
necessary as we want to have a finer grained control/permission on certain parts of a super 
page, so de split it into several base pages. Also, we sometimes want to swap a huge page to 
disk, so we first split it into base pages and only send to disk the necessary amount of base 
pages. 

Evaluation 
As we can see in the table below, enabling huge pages gives a positive speedup for all the 
workflows presented, especially the last one where it achieved a speedup of 7.5 ! 

 


